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Abstract. We introduce a surface growth model where the elementary events are character- 
ized by a waiting time distribution P(T). Exact relations to directed polymer statistics and 
to continuous time random walk problems are established. For P ( T )  - I/.’“ the behaviour 
is similar to that of the Zhang model where rare-event-dominated kinetic roughening occurs 
due to a power-law noise in the surface increments. A careful correction to scaling analysis 
of our numerical results in 1 + 1 dimensions indicates universality with the Zhang model 
for fixed values of p. 

Surface growth often leads to kinetic roughening [l] which can be characterized by 
the dynamic scaling of the correlation function C(r, 1 )  =(lh(r+r’,  t)-h(r’,  t ) p )  where 
h is the height variable of the surface measured from a d-dimensional Rat substrate 
of linear size L. The scaling involves two exponents: 

c ( r ,  ~ ~ - l ~ 1 2 ~ ~ ~ / l ~ l ~ ’ ’ ?  (1) 

where i is the roughness exponent and c / p  = z is the dynamic exponent. The scaling 
function f has the properties f( a )  + constant for a >> 1 and f ( a )  + a2’ for a <c 1 in a 
very large system ( L > >  t” ‘ ) .  

For a large class of systems an adequate theory of kinetic roughening was presented 
by Kardar er al [2] who set up the following Langevin-type equation for the time 
evolution of h :  

d,h  = v V 2 h + ( A / 2 ) ( V h ) ’ + ~  (2)  
with U and A being phenomenological parameters. The term 9 represents noise which 
is usually supposed to be uncorrelated and bounded (e.g. Gaussian). For this case 
equation (2) leads to the exact exponents [=  f and 0 = k for substrate dimension 1 
(i.e. in 1 + 1 dimensions). Furthermore, there is a relationship between the two exponents 
[31 

6 + 5 / P = 2  ( 3 )  
which holds in any dimension. In higher dimensions extensive numerical investigations 
have been carried out either based on the direct solution of (2) [4, 5 1  or on simulating 
models [6-91 which are expected to be described by the KPZ theory. Thus we know 
the values of the exponents to a high accuracy. 
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In some recent experiments [IO-121 on quasi-(1 + I)-dimensional surface growth 
exponents were obtained which are significantly larger than the values predicted by 
the KPZ theory. As a possible solution of this discrepancy Zhang proposed [I31 that 
a power-law distribution of the noise amplitudes 

(4) 
otherwise 

(instead of a bounded distribution) could lead to larger exponents. In fact, a great 
deal of numerical evidence has accumulated [13-17] and supports this idea. 

A simple scaling argument [18,19], based on the assumption that the rare events 
determine the roughness, leads to the following dependence of the exponents 6 and 
p on p: 

where the relationship (3) is still valid. As long as the exponents (5) are larger than 
those without power-law noise the rare events are relevant. This way (5) predicts a 
critical value pc above which no influence of the power-law noise on the exponents 
should occur; e.g. p c =  5 in 1 + 1 dimensions. The numerical results in this respect are 
controversial: Amar and Family [ 141 detected p-dependent exponents up to p = 7-8 
while Buldyrev er a/ [15] concluded that pLF should in fact be close to 5.  

The analogue of rare-event-governed roughening could also be observed in the 
statistics of directed polymers in random media [20] since this problem is related to 
kinetic roughening as already noticed by Kardar er a/ [Z]. In a recent paper [ Z l ]  this 
relationship was made more direct by relating Eden growth and polymer configurations 
via a waiting time distribution o i  the growth events. The cruciai point was the iden- 
tification of the waiting times of the growth problem with the random energy values 
of the sites for the directed polymer. 

In this letter we follow the lines of Roux er a/ [21]. However, there are two essential 
differences: (i) in contrast to Roux er a/ our mapping of the growth problem to the 
statistics of directed polymers is exacf; (ii) for our model a power-law distribution of 
the waiting times ieads io rare-event-governed growth which was not the case for the 
Eden model considered by Ruux et a/. The reason for this latter difference is that we 
take a model with negative effective A (in (2)) as the starting point of our considerations 
while the Eden model is characterized by a positive A. Our approach relates the Zhang 
model to biased continuous time random walks in a lattice gas. Numerical simulation 
of the model is used to clarify questions of universality. 

L ne modei we iniroducc is a reformuiaiion and eximsiun of ihe siugie-siep iiiodei 
[3,22] on a square lattice tilted by 45". Each lattice site R = n , a ,  + ii2a2 is assigned a 
substrate coordinate x ( R ) =  n,-n, and a height h ( R ) =  n , + n , ,  where a,  and a2 are 
edge vectors pointing at 45" and 135". respectively. In  a strip geometry, a surface of 
L lattice points x = 1, , L satisfies the 'single-step rule' I h ( x + l ) - h ( x ) l =  1 and is 
closed under periodic boundary conditions in the horizontal direction. The starting 

and -1  for even and odd integers x. Growth ( h ( x ) +  h(x)+2)  can take place only at 
local minima of the height h ( x ) .  Following Roux er a/, we formulate the growth model 
in terms of waiting times T ( R )  which are independent stochastic variables drawn from 
a given distribution P(T). Each unoccupied site R at h > O  is assigned a waiting time 

?..I 

configuiaiioii zt i = 6 is  a ciysial .wl"rii-h has a 'fiat' ai i ~ 6, .With qua: io 0 
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T(R) > 0. The waiting time at R is counted from the moment when this site becomes 
a growth site, i.e. once the two lower neighbours at R - a,  and R - a2 are occupied. 
When the waiting period expires, this site gets occupied. We first show how this model 
is mapped onto the problem of directed polymers. 

The site R becomes occupied at  atime f ( R )  which is obviously given by the iteration 

(6) 

This is in contrast to the Eden model where, as occupation of any one of its neighbouring 
sites makes R a growth site, the max-rule in (6) is replaced by a min-rule. Iterating 
(6) yields 

l ( R )  = T(R)+max{f(R -a,) ,  l(R-a2)}. 

t ( R ) = m a x  1 T(R') 
s LGS I 

where each path S is directed upwards along the edges of the squares, starting from 
any site at h = 1 and terminating in R. Identifying -T(R) with the site energy at R, 
the problem posed by (7) is identical to finding a ground state configuration of a 
polymer directed along the diagonal on the square lattice with a random site-energy 
distribution. Thus we have established an exact mapping between the waiting-time 
single-step model and the directed polymer problem at zero temperature. The growth 
process, like the transfer matrix approach, naturaUy follows minimum energy paths 
of the directed polymer problem. This is in contrast to the case studied by Roux el a1 
[21] because the overhangs in the Eden model lead to the violation of the directedness. 

Denoting the ground state energy by E, in our mapping we identify -E with the 
time of growth and the length of the polymer I with the height h of the surface. Similar 
to the Eden model considered by Roux el al, the exponent p which describes the 
power-law increase of height fluctuations as a function of 1, and which occurs in the 
finite time correction of the height [23], 

( h )  = ut + h ,  1' (8) 

is thus identified with the exponent IO which describes the non-analytic correction to 
the energy E as a function of the length of the polymer I, 

( E )  = eo/+ e,/". ( 9 )  

Here and elsewhere (. . .) denotes the average over the waiting time o r  random energy 
distribution. The equivalence of (8) and (9) also yields the following relations between 
the constants, 

U = - l j e ,  h ,  = e,u'+'. (10) 

Since the minimum energy is approached from above for increasing I, e, and hence 
h ,  are expected to be positive. In contrast, the same argument applied to the Eden 
model yields a negative h , .  As h,cs -A [23] this difference in the correction to the 
steady-state growth velocity U is consistent with the notion that Eden growth and 
single-step models correspond to positive and negative values of A in the KPZ equation, 
respectively, which was established previously on phenomenonological grounds. 

A second exponent in the growth problem is z which describes the power-law 
increase of the lateral correlation length 5- 1'". In the work of Roux et a/ [21], l j z  
was identified with the roughness exponent U' of a directed polymer, x- I " ' ,  through 
a finite-size scaling analysis. Here we show that the relation can be established also 
by considering an infinite system, L +  m. The mapping discussed above applies to any 
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site on the surface. In a given realization of the growth process, however, the waiting 
times and thus the random site-energies are fixed. The minimum energy paths to surface 
sites sufficiently close to each other may overlap significantly, thus becoming correlated. 
Identifying the lateral correlation length with the typical transverse meandering distance 
of the polymer, one obtains U’= l / z .  

Let us turn to the question of how our model is related to other surface growth 
models. In the single-step model considered in [3,22], the surface moves via random 
deposition at its local minima. This model can be extended to include noise reduction 
[24] such that growth takes place after a site has accumulated M 3 1 hits. For a 
sufficiently large system, the above scheme is equivalent to our model with a continuous 
waiting-time distribution 

7M--I  

P(T)=-  (11) T ( M )  e-r 

where the lii = i case was discussed b y  Roux et ai p i  j. 
Growth models with waiting time distributions can b e  related also to models with 

two sublattices and parallel updating where a growth site at a given time becomes 
occupied with a probability p .  For this purpose we restrict T ( R )  to half-integer values, 
and do the count-down in units o f f .  The two sublattices correspond to sites at even 
and odd values of x. As the growth sites at f = 0 belong to the even sublattice, growth 
ai  siies wiih odd jcvenj x vaiues happens oniy ai inieger (haif-integer) times. T i e n  
we obtain the following probability distribution of waiting times, 

(12) 1-1 /2  7 = 1  2 p ( T ) = P ( l  - P )  2 . 2 ,  

It is straightforward to see the generalization of the waiting-time description and hence 
the mapping to directed polymers problem to the hypercube-stacking model [SI without 
evaporation and to the restricted so!id-on-solid growth mode!s of Kim and Koster!i!z 
[7] in any dimension, which we shall not elaborate here. 

It is well known that the (d + 1)-dimensional single-step model can be mapped 
onto a d-dimensional spin model [3,22]. The mapping is particularly simple in 1 + 1 
dimensions: the surface configuration is then equivalent to a state of a one-dimensional 
lsing system or a lattice gas if spins si are defined as si = hi - hi- ,  , where si = 1 (-1) 
corresponds to an occupied (empty) site in the lattice gas picture. A local surface 
minimum is represented by a pair of neighbouring sites on the chain with the left one 
empty and right one occupied. Growth at the minimum is realized by an exchange of 
the two sites, i.e., particle hopping to the left. 

Plischke ef a/ [22] generalized this model by allowing evaporation at the ‘peaks’ 
of the surface i.e. allowing particles to hop to their empty neighbours on the right. 
There are rates defined for right and left hopping thus the model corresponds to a 
diffusion problem in a lattice gas. Such a model can also be specified in terms of 
waiting times: whenever a site becomes a candidate for growth (evaporation) a waiting 
time is generated. Either the growth (evaporation) event happens after the waiting 
period expires or the site is blocked because of a change in the neighbourhood, in 
which case the waiting time is reset. 

Assuming a continuous distribution for the waiting times, the model corresponds 
to a continuous time random walk problem in a lattice gas. 

In the remainder of the letter we shall focus on the single-step model with the 
following distribution of waiting times for growth, 

P ( T )  = (T+f)-’- ( T + f ) - ’  .=f , 2 3 2 . .  z I . . (13) 
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No evaporation is allowed. At large T. P(T) falls off as p ~ - ’ - ‘ .  In contrast to the Eden 
model where the time is mapped to the energy (rather than the negative energy) of a 
polymer, we expect the power-law waiting time distribution to affect surface roughness 
here. 

We have performed simulations of the single-step model without evaporation with 
the distribution (13) to check the predicted values of the exponents as a function of 
p. For the data presented below the system size was chosen at L =  los surface sites 
and averages were performed over 20-40 realizations. Each data set-up to f = 1024 
took about 200 minutes on an IBM 3090 machine without vectorization facility. Figure 
1 shows the minimum energy paths (or ancestry tree) to a small pan  of the surface in 
a typical run at IL =3. The growth of lateral correlations is evident from the expansion 
of the size of the trees. 

Figure 1. Minimum energy configurations to part of the surface ( p  = 3) 

- 
We have measured the mean-square surface width w2( t )  = ( h 2 (  f) - B’( t ) )  and the 

height-height correlation function C(r ,  f )  at  f = 2“, m = 0, 1 , .  . . , 10. (The quantities 
with a bar are spatial averages.) Figure 2 shows the A w ’ ( t ) -  w’(2r)- w 2 ( f )  against t 

on a log-log scale for p = 2.5,4 and 7. 
In the usual single-step model the dominant correction to scaling is the constant 

intrinsic width [ 2 5 ] .  The quantity Aw‘ does not contain this correction anymore [8]. 
Similarly to other investigations [ 15- 171 of rare-event-governed roughening we see 
strong corrections to scaling in addition to that caused by the intrinsic width (figure 
2). The lack of a good understanding of the correction-to-scaling term prevented us 
from obtaining accurate estimates of p. 

In contrast, we show how the height-height correlation data can be extrapolated 
to t = W. We simulated large ( L  = 10’) systems for rather shon times so that corrections 
mainly stem from finite time and not from finite size. Our extrapolation scheme is 
based on a dynamic scaling ansatz for the height-height correlation function in 
momentum space, 

( h (  k, t ) h (  k’, f)) = k-”’‘[ .fO+.f(tk‘)]S( k + k‘) (14) 
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time 
Figure 2. Corrected mean-square surface width data against time. f i  = 2 . 5 ,  4 and 8 from 

top lo the bottom. The system size was L =  IO' and averages over 40 runs were taken. 

where f,+?( 6 )  -cz' for ;<< 1 and f( b)  + 0 for 6 >> 1. Fourier transforming the above 
expression yields 

where a is the lattice constant. The term proportional to io yields the asymptotic time 
independent correlation function to which we want to extrapolate our time dependent 
data. Assuming that the function?( fk') decays quickly to zero for increasing arguments 
the cosine can be expanded. Up to fourth order we obtain 

c( r, 1 )  = c( r, o o ) + f , r z r ~ 2 ' 1 ~ c ~ ~ ~ + f ~ r 4 ~ ~ z  (16) 

for a fixed r. The.parameters C (  r, CO), f ,  and f z  are determined by a least-squares fit 
for fixed r. The exponent 5 is an input into this fit and is calculated self-consistently 
such that it agrees with the slope of the log-log plot of C(r ,  00). Actually the fit is not 
very sensitive to the choice of i. For r >  10 the dependence of the fitted values forf i  
on r is only on the second or third significant digit, while f2 is at least one order of 
magnitude smaller than f i  in most cases. Figure 3 shows the extrapolated correlation 
function for different values of p. Figure 4 presents the consecutive slopes for p = 3 
and 7 from figure 3 against I/.. At the largest r-values the effective exponents drop 
significantly which we take as an indication of the saturation due to the short times 
used in the simulations. Ignoring these parts of the curves, we extrapolate the exponent 
5. The obtained values are given in figure 5.  

In this letter we have shown how to generalize the model of rare-event-governed 
roughening to the case where A is negative in (2). For this purpose we introduced 
waiting times into the single-step model and assumed a power-law distribution for 
them (13). Our model can be mapped exactly to the directed polymer problem and to 
continuous time random walks of interacting particles. Due to a careful correction to 
scaling analysis we were able to obtain accurate results for the exponent 5 from short 
time runs for correlation function. The effective exponents lie above the values Of.(5) 
up to =7. If our estimates are close to the true values, one has to conclude that ( 5 )  
should be interpreted as lower bounds for the exponents. These findings are similar 
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r 
Figure 3. The height-height correlation data extrapolated to I + W .  From top to bottom 
~ = 2 . 5 ,  3, 4. 5, 7, 9. The data are obtained for short times and therefore indication of 
saturation can be seen. 

G 1 . 4  '.5r 
l /r  

Figure 4. Consecutive slopes from figure 3 for + = 3  ( x )  and 7 (0). !:;.I 
A.- 

. 7  

. e  

. 5  

. 42 4 6 6 10 

P 
Figure 5. Estimates for the roughness exponents 5. The solid line indicates the predicted 
values according to ( 5 ) .  
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to the ones by Amar and Family 1141 who simulated the Zhang model with parallel 
updating and a positive A. 

This research was supported in part by the DFG through SFB 237 and 341. J K  thanks 
the Humboldt foundation for support. Thanks are due to the GMD at St Augustin for 
computer time on the Alliant parallel computer. 

Note added, After submission of this letter we learned of an independent study of a similar model by 
M H Jensen and I Procaccia. 
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